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Abstract—The multi-head self-attention (MHSA) is the core
component of the transformer, where dynamic matrix multipli-
cations (DMM), particularly Q×KT and A′×V , pose significant
challenges for hardware acceleration. To reduce DMM MACs,
this paper proposes a Dynamic Attention Matrix Fusion (DAMF)
method, which optimizes DMM from the attention algorithm.
For Q × KT , a quadratic form fusion of WQWK weight
matrices and an SVD approximation is introduced, transforming
DMM into fewer scalar operations and eliminating the linear
transformations for QK generation. For A′ × V , this paper
proposes approximating softmax using a Maclaurin series and
power-of-2 as a shift factor, replacing A′ × V with a hardware-
friendly shift operation. Experimental results show that the
proposed DAMF method does not cause significant accuracy loss
in the BERT-base. Additionally, compared to MHSA with the
same configuration, DAMF reduces parameters by 1.99 times,
DMM MACs by 284 times, total MACs by 2.21 times and memory
access by 2.71 times.

Index Terms—Transformer, SVD, Softmax, MultiHead Self-
attention, Hardware-Software Co-design

I. INTRODUCTION

Transformer is a highly performant deep neural network
(DNN) [1], widely applied in natural language processing
[2]–[5] and computer vision tasks [6]–[9]. The multi-head
self-attention (MHSA) mechanism [10], which forms the
core structure of the transformer, is designed to improve
the model’s ability to focus on different parts of the input
sequence simultaneously. As the number of parameters and
computational demands of transformers continue to increase,
there is a growing need for specialized hardware accelerators
to ensure efficient inference.

Dynamic matrix multiplication (DMM) in MHSA poses sig-
nificant challenges for the design of transformer accelerators,
especially those based on compute-in-memory (CIM) [11].
In MHSA, static matrix multiplication (SMM) involves the
multiplication of activation values and weights, such as the
linear transformations that generate Q,K, and V . In contrast,
the operands of DMM are intermediate values, such as Q×KT

and A′ × V . The hardware design challenges posed by DMM
can be summarized in the following two aspects below, also
shown in Fig 1.

• Additional Memory Access. In CIM macro, weights and
inputs of DMM are both generated during runtime. This
results in redundant memory access [12], [13] or requires
a transpose buffer [14]–[16] to handle intermediate data
efficiently.

• Much more power consumption. For instance, in
MulTCIM [17], during the inference of BERT-base, the
Q × KT and A′ × V account for 58.16% of the total
power consumption. However, these computations repre-
sent only 4.06% of the total MACs.

Existing research on optimizing DMM has primarily fo-
cused on designing dynamic computing engines [13], [17],
[18] and wordline-feeding [19] to achieve high-speed writing
and data transposition. However, hardware-level approaches
alone cannot directly reduce the MACs of DMM.

Based on the existing facts, this study examines the data
flow within MHSA, aiming to merge and approximate DMM-
related computations. This approach reduces computations
and parameters, significantly inspiring for alleviating memory
access and power consumption challenges.

Optimization for Q × KT . The attention score calculation
includes two steps: the linear transformations to generate Q
and K, and the DMM Q×KT . This paper proposes a method
to combine these steps into a single matrix operation with
quadratic form. By using singular value decomposition (SVD)
on this quadratic matrix, we approximate the computation with
the singular vector of the largest singular value. As a result,
calculating a single attention score only requires two vector
inner products and one scalar multiplication, significantly
reducing DMM MACs.

Optimization for A′ × V . The matrix A′ represents atten-
tion weights, derived from the normalization and softmax of
attention scores. This paper introduces a Maclaurin series and
power-of-2 approximation [20], [21] to approximate softmax
as shift factors. This approach replaces the DMM A′ × V
with shift operations while eliminating the exponential and
division computations introduced by softmax, making it more
hardware-friendly.

The above strategies constitute the dynamic attention matrix
fusion (DAMF) method proposed in this paper, with the
following contributions:

• Introduction a Q,K weight matrices fusion with a
quadratic form and SVD approximation. This fusion
eliminates both the Q,K generation and the Q×KT .

• Proposed an approximation of A′ × V with Maclaurin
series and power-of-2 method, replacing the softmax and
A′ × V with shift operations.

• Experiment on the BERT-base and the GLUE dataset
demonstrates the effectiveness of the DAMF method,
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Fig. 1. The challenges caused by DMM.

significantly reducing the parameters and DMM MACs
without substantial accuracy loss.

II. RELATIVE WORKS

In MHSA, the input sequence is linearly transformed into
multiple sets of queries Qs, keys Ks, and values V s, each
corresponding to a different head. These sets are processed
independently, allowing each head to focus on different parts
of the sequence or capture various features.

In a single head, the attention scores are computed by taking
the dot product of the Q and K vectors, followed by a softmax
operation to obtain attention weights, which are subsequently
used to weigh the V vectors. Then the outputs from all heads
are concatenated and linearly transformed to produce the final
output.

For an input sequence of token length L and model dimen-
sionality dmodel, X is the input token, the multi-head attention
mechanism can be expressed as follows.

The linear projection of Q,K, V , where WQi,WKi,WV i

are the weight matrices for the i− th head, and nhead is the
number of attention heads.

Qi = XWQi, Ki = XWKi, V i = XWV i (1)

The attention output of single head as follow, where dhead =
dmodel

nhead
is the dimensionality of each head.

Attentioni = softmax

(
QiKiT

√
dhead

)
V i (2)

Denote A = QiKiT , and A′ = softmax( A√
dhead

).
Concatenation and final linear projection as follow, where

WO is the output projection matrix

MultiHead = Concat(Attention1, ··,Attentionnhead
)WO

(3)

III. METHOD

A. DAMF for Q×KT

The overview of Q×KT dynamic attention matrix fusion
can be summarized in Fig 2.
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Fig. 2. The overview of DAMF for Q×KT .

According to formula (1) (2), a score in the attention score
matrix A can be expressed as (4). The m,n is the index of
input token, and Amn represents the element in matrix A

Amn = (XmWQ)(XnW
K)

T

= XmWQWKTXT
n

(4)

Let M = WQ(WKT ), the formula (4) can be further
simplified as an expression in quadratic form:

Amn = XmMXT
n (5)

To simplify matrix computations, an approximating method
for the matrix M by SVD decomposition, which can be
expressed as formula (6), where U and V are orthogonal
matrices, and Σ is a diagonal matrix containing the singular
values of M .

M = UΣV T (6)

M can be further expressed as a weighted sum of outer
products of left and right singular vectors, as shown in formula



(7). Here, uk, vk is the k− th column vector in U, V (left and
right singular vector respectively), and σk is the k−th singular
value in Σ.

M =
∑
k

σkµkv
T
k (7)

When the singular values in Σ are sparse, M can be
approximated by the singular vectors corresponding to the
largest singular values. Formula (5) can be simplified to
expression (8).

Amn = σmaxXm(µmaxv
T
max)X

T
n

= σmax(Xmµmax)(Xnvmax)
T (8)

Where σmax, µmax, vmax represent the maximum singular
value and the singular vectors.

Due to the normalization before softmax involving the
division of maximum value of A, the multiplication by σmax

in the formula (8) can be omitted.
To induce sparsity in the singular values of Σ, a maximum

singular value constraint is proposed, as shown in formula
(9). Adding this loss function during training can increase the
importance of the maximum singular value among all, thereby
improving the approximation accuracy.

LMS = 1− σmax/
∑
k

σk (9)

Fig 3 shows the data flow comparison between Q × KT

in original MHSA and the DAMF optimization. The linear
transformations and Q×KT are replaced by two vector inner
products and two scalar multiplications.

With DAMF optimization, the DMM only involves a small
amount of scalar operations. Besides, for the CIM units
generating Q,K, it only needs to store the singular vectors
with fewer parameters, instead of the WQ,WK matrix.

B. DAMF for A′ × V

After generation of attention score matrix A, it is normalized
by its maximum value Amax before inputting into Softmax.

Norm(Amn) = Amn/Amax (10)

Softmax is a crucial component in MHSA and can be
expressed as (11). Here, it transfers each row vector in the
normalized attention score matrix A into a probability vec-
tor, emphasizing the maximum value within. This operation,
followed by matrix product with V , highlights significant
components in V .

A′
mn = softmax(Norm(Amn)) =

eAmn/Amax∑
n
eAmn/Amax

(11)

According to the expansion of MacLaurin series:

ex = 1 + x+
x2

2!
+

. . . · . . . x
2

n!
+O

(
xn

)
(12)
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Fig. 3. Q×KT comparison between original MHSA and DAMF. (a) Q×KT

data flow in original MHSA. (b) Q×KT data flow with DAMF.

Let eAmn/Amax ≈ 1 + Amn/Amax, formula (11) can be
expressed as:

A′
mn =

1 +Amn/Amax

L∑
n=1

(1 +Amn/Amax)

=
Amax +Amn

LAmax +
L∑

n=1
Amn

(13)

According to formula (13), A′ × V can be represented in
the form of element-wise multiplication:

A′
mnVnm =

VnmAmax + VnmAmn

LAmax +
L∑

n=1
Amn

(14)

Then the attention score Amn, Amax can be rounded to the
nearest power-of two value 2I .

Amn ≈ 2Imn , Amax ≈ 2Imax (15)

Similarly, the denominator in formula (14) is approximated by
the nearest power-of-two.

LAmax +

L∑
n=1

Amn ≈ 2Id (16)

By replacing the power-of-two with hardware-friendly shift
operations, Amn, Amax can be approximated as three shifts



as (17). The shift factor Imn, Imax, Id is derived from the
softmax approximation.

A′
mnVnm ≈ (Vnm << Imax + Vnm << Imn) >> Id (17)

The overview of DAMF optimization for A′×V is demon-
strated as Fig 4.
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IV. EXPERIMENT

A. Set up

In this experiment, BERT-base [22] is selected as the base-
line, and the proposed DAMF is applied to it. To comprehen-
sively evaluate the effectiveness of the proposed method, we
compared it against various versions of BERT-base, including
SkipBERT [23], BERT-PKD [24], and BERTsmall. These
models are designed and widely used to reduce the parameters,
computations, and processing latency of BERT.

The proposed method and the comparison methods are
validated on the GLUE corpus [25], which includes tasks
such as SST-2, MRPC, QQP, and RTE. These tasks cover a
range of types, including single-sentence tasks, similarity and
paraphrase tasks, and inference tasks.

B. Accuracy Loss

The experiment compared the percentage accuracy loss of
all methods relative to BERT-base across the four datasets. The
results, shown in Table I, indicate that the proposed method
achieved the smallest accuracy loss on SST-2, MRPC and RTE.

On the RTE dataset, the proposed method achieved 4.76%
improvement in task accuracy. This can be explained as DAMF
extensively prunes the structure of MHSA, introducing an
implicit regularization and avoiding overfitting [26].

C. Parameters and MACs

The total number of parameters and computations of a single
MHSA layer across all methods are compared in Table II.
The input token length is set to 128. In this experiment, the
proposed method achieved the fewest parameters and DMM
MACs, while reducing the DMM proportion in total MACs to
0.02%.

TABLE I
THE COMPARISON OF ACCURACY LOSS ON FOUR TASKS

Methods
Acc. Loss ↓*1

SST-2 MRPC QQP RTE
SkipBERT*2 2.78% 3.37% 1.40% 4.22%
BERT-PKD*2 4.39% 7.09% 1.40% 6.17%
BERTsmall*3 4.06% 6.19% 4.35% 6.93%
BERT+DAMF*4 0.28% 0.69% 4.11% -4.79%
*1 Percentage accuracy loss compared to BERT-base.
*2 The result of SkipBERT and BERT-PKD from reference

[23].
*3 The result of BERTsmall from https://github.com/google-

research/bert.
*4 The proposed method applied on BERT-base.

TABLE II
THE COMPARISON OF TOTAL PARAMETERS AND MACS IN MHSA

Param. /M*1 Dyn. MACs/M*1 MACs/M*1 Dyn. Ratio
SkipBERT*2 9.00 12.78 314.77 4.06%
BERT-PKD*2 9.00 12.78 314.77 4.06%
BERTsmall*3 4.00 8.52 142.74 5.97%
BERT+DAMF*2 4.51 0.03 153.39 0.02%
*1 The total parameters and MACs are evaluated at token size 128, with single

MHSA.
*2 SkipBERT, BERT-PKD and ours with dmodel = 768, nhead = 12, same as

BERT-base.
*3 BERTsmall with dmodel = 512, nhead = 8.

D. Memory Access

The memory access of a single attention head across all
methods are compared in the experiment. Since SkipBERT
and BERT-PKD share the same configuration and structure
as BERT-base, their memory access is identical. The memory
access of all algorithms are normalized by dividing that of
BERT-base. As shown in Fig 5, the proposed method achieves
the greatest reduction in memory access, improving by 2.71
times.
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Fig. 5. The normalized memory access.

E. Discuss

Although BERTsmall seems to achieve lower MACs, its
main benefit comes from the reduced model size. However,



the proportion of DMM MACs increases.
Unlike other methods in the experiment, the proposed

DAMF method does not change the number of attention heads
(nhead) or the hidden layer dimensions (dmodel). Compared to
SkipBERT and BERT-PKD, which have the same hyperparam-
eter settings, DAMF achieves a more significant reduction in
DMM MACs, approximately 426 times lower, while reducing
parameters by 1.99 times and total MACs by 2.21 times.

The proposed DAMF is a hardware-friendly optimization
compared to other methods. This is partly because DAMF sig-
nificantly reduces the proportion of DMM, greatly minimizing
memory access requirements. Additionally, DAMF eliminates
the exponential and division computations in the softmax
function, further enhancing hardware efficiency. These make
DAMF to be conducive to promoting the energy efficiency of
accelerators.

Lastly, DAMF exhibits a much smaller accuracy loss across
the four tasks compared to SkipBERT and BERT-PKD.

V. CONCLUSION

The proposed DAMF optimizes Q×KT and A′ × V from
an algorithmic perspective. Firstly, by leveraging WQ,WK

weight matrix fusion and SVD approximation, it merges the
linear transformation and Q×KT into vector inner products
and scalar operations, reducing both the parameters and DMM
computations. Secondly, it approximates the softmax as shift
factors based on the Maclaurin series and power-of-two, and
replaces the entire Q × KT with hardware-friendly shift
operations.

Experimental results show that the proposed method applied
to the BAER-base does not introduce significant accuracy loss.
Compared to MHSA with the same configuration, it reduces
the parameters by 1.99 times, DMM MACs by 284 times, total
MACs by 2.21 times and memory access by 2.71 times.
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