
Hardware Friendly Transformer Optimization with
Dynamic Attention Matrix Fusion

Qingyao Yang1,2, Xiaoqin Wang1,2, Qiang Li1,2, Shushan Qiao1,2 and Yumei Zhou1,2
1Institute of Microelectronics of the Chinese Academy of Sciences, Chaoyang, Beijing, China

2School of Integrated Circuits, University of Chinese Academy of Sciences, Huairou, Beijing, China.
Corresponding Author: Xiaoqin Wang, Shushan Qiao; Email: wangxiaoqin@ime.ac.cn, qiaoshushan@ime.ac.cn

Abstract—The multi-head self-attention (MHSA) is the core
component of the transformer, where dynamic matrix multipli-
cations (DMM), particularly Q×KT and A′×V , pose significant
challenges for hardware acceleration. To reduce DMM MACs,
this paper proposes a Dynamic Attention Matrix Fusion (DAMF)
method, which optimizes DMM from the attention algorithm.
For Q × KT , a quadratic form fusion of WQWK weight
matrices and an SVD approximation is introduced, transforming
DMM into fewer scalar operations and eliminating the linear
transformations for QK generation. For A′ × V , this paper
proposes approximating softmax using a Maclaurin series and
power-of-2 as a shift factor, replacing A′ × V with a hardware-
friendly shift operation. Experimental results show that the
proposed DAMF method does not cause significant accuracy loss
in the BERT-base. Additionally, compared to MHSA with the
same configuration, DAMF reduces parameters by 1.99 times,
DMM MACs by 284 times, total MACs by 2.21 times and memory
access by 2.71 times.

Index Terms—Transformer, SVD, Softmax, MultiHead Self-
attention, Hardware-Software Co-design

I. INTRODUCTION

Transformer is a highly performant deep neural network
(DNN) [1], widely applied in natural language processing
[2]–[5] and computer vision tasks [6]–[9]. The multi-head
self-attention (MHSA) mechanism [10], which forms the
core structure of the transformer, is designed to improve
the model’s ability to focus on different parts of the input
sequence simultaneously. As the number of parameters and
computational demands of transformers continue to increase,
there is a growing need for specialized hardware accelerators
to ensure efficient inference.

Dynamic matrix multiplication (DMM) in MHSA poses sig-
nificant challenges for the design of transformer accelerators,
especially those based on compute-in-memory (CIM) [11].
In MHSA, static matrix multiplication (SMM) involves the
multiplication of activation values and weights, such as the
linear transformations that generate Q,K, and V . In contrast,
the operands of DMM are intermediate values, such as Q×KT

and A′ × V . The hardware design challenges posed by DMM
can be summarized in the following two aspects below, also
shown in Fig 1.

• Additional Memory Access. In CIM macro, weights and
inputs of DMM are both generated during runtime. This
results in redundant memory access [12], [13] or requires
a transpose buffer [14]–[16] to handle intermediate data
efficiently.

• Much more power consumption. For instance, in
MulTCIM [17], during the inference of BERT-base, the
Q × KT and A′ × V account for 58.16% of the total
power consumption. However, these computations repre-
sent only 4.06% of the total MACs.

Existing research on optimizing DMM has primarily fo-
cused on designing dynamic computing engines [13], [17],
[18] and wordline-feeding [19] to achieve high-speed writing
and data transposition. However, hardware-level approaches
alone cannot directly reduce the MACs of DMM.

Based on the existing facts, this study examines the data
flow within MHSA, aiming to merge and approximate DMM-
related computations. This approach reduces computations
and parameters, significantly inspiring for alleviating memory
access and power consumption challenges.

Optimization for Q × KT . The attention score calculation
includes two steps: the linear transformations to generate Q
and K, and the DMM Q×KT . This paper proposes a method
to combine these steps into a single matrix operation with
quadratic form. By using singular value decomposition (SVD)
on this quadratic matrix, we approximate the computation with
the singular vector of the largest singular value. As a result,
calculating a single attention score only requires two vector
inner products and one scalar multiplication, significantly
reducing DMM MACs.

Optimization for A′ × V . The matrix A′ represents atten-
tion weights, derived from the normalization and softmax of
attention scores. This paper introduces a Maclaurin series and
power-of-2 approximation [20], [21] to approximate softmax
as shift factors. This approach replaces the DMM A′ × V
with shift operations while eliminating the exponential and
division computations introduced by softmax, making it more
hardware-friendly.

The above strategies constitute the dynamic attention matrix
fusion (DAMF) method proposed in this paper, with the
following contributions:

• Introduction a Q,K weight matrices fusion with a
quadratic form and SVD approximation. This fusion
eliminates both the Q,K generation and the Q×KT .

• Proposed an approximation of A′ × V with Maclaurin
series and power-of-2 method, replacing the softmax and
A′ × V with shift operations.

• Experiment on the BERT-base and the GLUE dataset
demonstrates the effectiveness of the DAMF method,

19.8%

Dynamic MM

. FN PSZァ" DDFTTァ#SFBLEPX O

1BSBN Tァ#SFBLEPX OァPGァ7J-#&35

&OFSHZァ#SFBLEPX OァPGァ7J-#&351BSBN Tァ#SFBLEPX OァPGァ7J-#&35

𝑾𝑾𝑲𝑲𝑾𝑾𝑸𝑸𝑾𝑾𝑽𝑽

𝑲𝑲𝑻𝑻

Static MM
(Compute Q, K & V)

Dynamic MM

Data Flow
Memory Access

𝑴𝑴𝑴𝑴𝑴𝑴

𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 & 𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺

𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳 𝑳𝑳ayer

𝑿𝑿

Write

Read

K-Transpose

𝑉𝑉 𝑄𝑄

𝑽𝑽

Multi-Head

Input Token L× 𝒅𝒅𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎

Plan I

Plan II

…

K-Gen
Direction

T-Buffer

𝑲𝑲 Transpose Buffer
and Access

Factor I：Extra Memory Access & Consumption

Static MM Dynamic MM

𝑋𝑋

𝐾𝐾 𝐾𝐾

𝑾𝑾𝑲𝑲 𝑲𝑲𝑻𝑻

Redundant Off-chip
Memory Access Dynamic Matrix Multiple with Small MACs

Proportion, but Large Energy Consumption
𝐴𝐴′

Write

Factor II：Higher Energy Consumption

𝑴𝑴𝑴𝑴𝑴𝑴

𝑄𝑄 𝐴𝐴
BERT-base *1

ViT-small *2

4.06%

58.16%

8.54%

37.00%

0% 20% 40% 60% 80% 100%

MACs of DMM

MACs of DMM

Energy of DMM

Energy of DMM

*1: Energy data comes from citation [17]. INT16 for 𝑸𝑸 × 𝑲𝑲𝑻𝑻 and 𝑨𝑨′ × 𝑽𝑽, INT8 for FC.
*2: Energy data comes from citation [14].

𝑭𝑭𝑭𝑭𝑭𝑭 𝑳𝑳ayer

Fig. 1. The challenges caused by DMM.

significantly reducing the parameters and DMM MACs
without substantial accuracy loss.

II. RELATIVE WORKS

In MHSA, the input sequence is linearly transformed into
multiple sets of queries Qs, keys Ks, and values V s, each
corresponding to a different head. These sets are processed
independently, allowing each head to focus on different parts
of the sequence or capture various features.

In a single head, the attention scores are computed by taking
the dot product of the Q and K vectors, followed by a softmax
operation to obtain attention weights, which are subsequently
used to weigh the V vectors. Then the outputs from all heads
are concatenated and linearly transformed to produce the final
output.

For an input sequence of token length L and model dimen-
sionality dmodel, X is the input token, the multi-head attention
mechanism can be expressed as follows.

The linear projection of Q,K, V , where WQi,WKi,WV i

are the weight matrices for the i− th head, and nhead is the
number of attention heads.

Qi = XWQi, Ki = XWKi, V i = XWV i (1)

The attention output of single head as follow, where dhead =
dmodel

nhead
is the dimensionality of each head.

Attentioni = softmax

(
QiKiT

√
dhead

)
V i (2)

Denote A = QiKiT , and A′ = softmax(A√
dhead

).
Concatenation and final linear projection as follow, where

WO is the output projection matrix

MultiHead = Concat(Attention1, ··,Attentionnhead
)WO

(3)

III. METHOD

A. DAMF for Q×KT

The overview of Q×KT dynamic attention matrix fusion
can be summarized in Fig 2.

𝑊𝑊𝑄𝑄/𝑊𝑊𝐾𝐾 𝑀𝑀

𝑊𝑊𝑄𝑄𝑊𝑊𝐾𝐾𝐾𝐾

𝑇𝑇

𝜇𝜇𝑚𝑚𝑚𝑚𝑚𝑚 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑇𝑇

𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚
SVDFuse

𝐿𝐿𝑚𝑚𝑚𝑚 = 1 − 𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚/�
𝑘𝑘

𝜎𝜎𝑘𝑘
Constrain

Dynamic Attention Matrix Fusion for 𝑸𝑸 × 𝑲𝑲𝑻𝑻

Atten-Score via DAMF

Q&K-Gen
𝑸𝑸𝑲𝑲𝑻𝑻

MHSA 𝑸𝑸 × 𝑲𝑲𝑻𝑻

𝑊𝑊𝑄𝑄/𝑊𝑊𝐾𝐾

𝑇𝑇 𝑇𝑇

𝑋𝑋𝑛𝑛 𝑄𝑄/𝐾𝐾

𝑄𝑄 𝐾𝐾𝑇𝑇 𝐴𝐴𝑚𝑚𝑚𝑚

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝:𝑑𝑑𝑘𝑘 × 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝑇𝑇

𝑋𝑋𝑚𝑚

Dynamic partStatic part

𝑇𝑇

𝑋𝑋𝑛𝑛 𝜇𝜇𝑚𝑚𝑚𝑚𝑚𝑚 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚𝑇𝑇

𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚

𝐴𝐴𝑚𝑚𝑚𝑚

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝:2𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝑋𝑋𝑚𝑚

𝑇𝑇

Static part Dynamic part

Fig. 2. The overview of DAMF for Q×KT .

According to formula (1) (2), a score in the attention score
matrix A can be expressed as (4). The m,n is the index of
input token, and Amn represents the element in matrix A

Amn = (XmWQ)(XnW
K)

T

= XmWQWKTXT
n

(4)

Let M = WQ(WKT), the formula (4) can be further
simplified as an expression in quadratic form:

Amn = XmMXT
n (5)

To simplify matrix computations, an approximating method
for the matrix M by SVD decomposition, which can be
expressed as formula (6), where U and V are orthogonal
matrices, and Σ is a diagonal matrix containing the singular
values of M .

M = UΣV T (6)

M can be further expressed as a weighted sum of outer
products of left and right singular vectors, as shown in formula

(7). Here, uk, vk is the k− th column vector in U, V (left and
right singular vector respectively), and σk is the k−th singular
value in Σ.

M =
∑
k

σkµkv
T
k (7)

When the singular values in Σ are sparse, M can be
approximated by the singular vectors corresponding to the
largest singular values. Formula (5) can be simplified to
expression (8).

Amn = σmaxXm(µmaxv
T
max)X

T
n

= σmax(Xmµmax)(Xnvmax)
T (8)

Where σmax, µmax, vmax represent the maximum singular
value and the singular vectors.

Due to the normalization before softmax involving the
division of maximum value of A, the multiplication by σmax

in the formula (8) can be omitted.
To induce sparsity in the singular values of Σ, a maximum

singular value constraint is proposed, as shown in formula
(9). Adding this loss function during training can increase the
importance of the maximum singular value among all, thereby
improving the approximation accuracy.

LMS = 1− σmax/
∑
k

σk (9)

Fig 3 shows the data flow comparison between Q × KT

in original MHSA and the DAMF optimization. The linear
transformations and Q×KT are replaced by two vector inner
products and two scalar multiplications.

With DAMF optimization, the DMM only involves a small
amount of scalar operations. Besides, for the CIM units
generating Q,K, it only needs to store the singular vectors
with fewer parameters, instead of the WQ,WK matrix.

B. DAMF for A′ × V

After generation of attention score matrix A, it is normalized
by its maximum value Amax before inputting into Softmax.

Norm(Amn) = Amn/Amax (10)

Softmax is a crucial component in MHSA and can be
expressed as (11). Here, it transfers each row vector in the
normalized attention score matrix A into a probability vec-
tor, emphasizing the maximum value within. This operation,
followed by matrix product with V , highlights significant
components in V .

A′
mn = softmax(Norm(Amn)) =

eAmn/Amax∑
n
eAmn/Amax

(11)

According to the expansion of MacLaurin series:

ex = 1 + x+
x2

2!
+

. . . · . . . x
2

n!
+O

(
xn

)
(12)

𝑊𝑊𝑄𝑄/𝑊𝑊𝐾𝐾 𝑀𝑀

𝑊𝑊𝑄𝑄𝑊𝑊𝐾𝐾𝐾𝐾

𝑇𝑇

𝜇𝜇𝑚𝑚𝑎𝑎𝑎𝑎 𝑣𝑣𝑚𝑚𝑎𝑎𝑎𝑎𝑇𝑇

𝜎𝜎𝑚𝑚𝑎𝑎𝑎𝑎
SVDFuse

𝐿𝐿𝑚𝑚𝑚𝑚 = 1 − 𝜎𝜎𝑚𝑚𝑎𝑎𝑎𝑎/�
𝑘𝑘

𝜎𝜎𝑘𝑘
Constrain

Dynamic Attention Matrix Fusion with SVD

Atten-Score via DAMF

Q&K-Gen
𝑸𝑸𝑲𝑲𝑻𝑻

MHSA 𝑸𝑸 × 𝑲𝑲𝑻𝑻

𝑊𝑊𝑄𝑄/𝑊𝑊𝐾𝐾

𝑇𝑇 𝑇𝑇

𝑋𝑋𝑛𝑛 𝑄𝑄/𝐾𝐾

𝑄𝑄 𝐾𝐾𝑇𝑇 𝐴𝐴𝑚𝑚𝑚𝑚

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝:𝑑𝑑𝑘𝑘 × 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝑇𝑇

𝑋𝑋𝑚𝑚

Dynamic partStatic part

𝑇𝑇

𝑋𝑋𝑛𝑛 𝜇𝜇𝑚𝑚𝑎𝑎𝑎𝑎 𝑣𝑣𝑚𝑚𝑎𝑎𝑎𝑎𝑇𝑇

𝜎𝜎𝑚𝑚𝑎𝑎𝑎𝑎

𝐴𝐴𝑚𝑚𝑚𝑚

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝:2𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝑋𝑋𝑚𝑚

𝑇𝑇

Static part Dynamic part

(a)

𝑊𝑊𝑄𝑄/𝑊𝑊𝐾𝐾 𝑀𝑀

𝑊𝑊𝑄𝑄𝑊𝑊𝐾𝐾𝐾𝐾

𝑇𝑇

𝜇𝜇𝑚𝑚𝑎𝑎𝑎𝑎 𝑣𝑣𝑚𝑚𝑎𝑎𝑎𝑎𝑇𝑇

𝜎𝜎𝑚𝑚𝑎𝑎𝑎𝑎
SVDFuse

𝐿𝐿𝑚𝑚𝑚𝑚 = 1 − 𝜎𝜎𝑚𝑚𝑎𝑎𝑎𝑎/�
𝑘𝑘

𝜎𝜎𝑘𝑘
Constrain

Dynamic Attention Matrix Fusion with SVD

Atten-Score via DAMF

Q&K-Gen
𝑸𝑸𝑲𝑲𝑻𝑻

MHSA 𝑸𝑸 × 𝑲𝑲𝑻𝑻

𝑊𝑊𝑄𝑄/𝑊𝑊𝐾𝐾

𝑇𝑇 𝑇𝑇

𝑋𝑋𝑛𝑛 𝑄𝑄/𝐾𝐾

𝑄𝑄 𝐾𝐾𝑇𝑇 𝐴𝐴𝑚𝑚𝑚𝑚

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝:𝑑𝑑𝑘𝑘 × 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝑇𝑇

𝑋𝑋𝑚𝑚

Dynamic partStatic part

𝑇𝑇

𝑋𝑋𝑛𝑛 𝜇𝜇𝑚𝑚𝑎𝑎𝑎𝑎 𝑣𝑣𝑚𝑚𝑎𝑎𝑎𝑎𝑇𝑇

𝜎𝜎𝑚𝑚𝑎𝑎𝑎𝑎

𝐴𝐴𝑚𝑚𝑚𝑚

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝:2𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝑋𝑋𝑚𝑚

𝑇𝑇

Static part Dynamic part

(b)

Fig. 3. Q×KT comparison between original MHSA and DAMF. (a) Q×KT

data flow in original MHSA. (b) Q×KT data flow with DAMF.

Let eAmn/Amax ≈ 1 + Amn/Amax, formula (11) can be
expressed as:

A′
mn =

1 +Amn/Amax

L∑
n=1

(1 +Amn/Amax)

=
Amax +Amn

LAmax +
L∑

n=1
Amn

(13)

According to formula (13), A′ × V can be represented in
the form of element-wise multiplication:

A′
mnVnm =

VnmAmax + VnmAmn

LAmax +
L∑

n=1
Amn

(14)

Then the attention score Amn, Amax can be rounded to the
nearest power-of two value 2I .

Amn ≈ 2Imn , Amax ≈ 2Imax (15)

Similarly, the denominator in formula (14) is approximated by
the nearest power-of-two.

LAmax +

L∑
n=1

Amn ≈ 2Id (16)

By replacing the power-of-two with hardware-friendly shift
operations, Amn, Amax can be approximated as three shifts

as (17). The shift factor Imn, Imax, Id is derived from the
softmax approximation.

A′
mnVnm ≈ (Vnm << Imax + Vnm << Imn) >> Id (17)

The overview of DAMF optimization for A′×V is demon-
strated as Fig 4.

Sorting

𝐴𝐴𝑚𝑚𝑚 …

Power 2
Approx

… …

Add…

𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚

𝑉𝑉𝑛𝑛𝑛 𝑉𝑉𝑛𝑛𝑛 𝑉𝑉𝑛𝑛𝑛𝑛…

<< << <<…

<< << <<…

>> >> >>…

𝐼𝐼𝑚𝑚𝑚~𝐼𝐼𝑚𝑚𝑚𝑚

𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚

𝐼𝐼𝑑𝑑

𝑎𝑎1 𝑎𝑎2 𝑎𝑎𝑑𝑑…

…

�𝐴𝐴𝑚𝑚𝑚𝑚

𝐴𝐴𝑚𝑚𝑚 𝐴𝐴𝑚𝑚𝑚𝑚

𝐴𝐴𝑚𝑚𝑚 …𝐴𝐴𝑚𝑚𝑚 𝐴𝐴𝑚𝑚𝑚𝑚

Sorting

Add

Power 2
Approx

A

�𝐴𝐴𝑚𝑚𝑚𝑚

𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚

V-Gen

𝑊𝑊𝑉𝑉

𝑇𝑇

𝑋𝑋

𝑉𝑉

...

𝐿𝐿 × 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

...

Shifter 1

Shifter 2

Shifter 3

𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚

…𝐼𝐼𝑚𝑚𝑚 𝐼𝐼𝑚𝑚𝑚𝑚

𝐼𝐼𝑑𝑑
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴

𝑇𝑇 𝑇𝑇 𝑇𝑇

Dynamic Attention Matrix Fusion for 𝑨𝑨′ × 𝑽𝑽

Fig. 4. The overview of DAMF for A′ × V .

IV. EXPERIMENT

A. Set up

In this experiment, BERT-base [22] is selected as the base-
line, and the proposed DAMF is applied to it. To comprehen-
sively evaluate the effectiveness of the proposed method, we
compared it against various versions of BERT-base, including
SkipBERT [23], BERT-PKD [24], and BERTsmall. These
models are designed and widely used to reduce the parameters,
computations, and processing latency of BERT.

The proposed method and the comparison methods are
validated on the GLUE corpus [25], which includes tasks
such as SST-2, MRPC, QQP, and RTE. These tasks cover a
range of types, including single-sentence tasks, similarity and
paraphrase tasks, and inference tasks.

B. Accuracy Loss

The experiment compared the percentage accuracy loss of
all methods relative to BERT-base across the four datasets. The
results, shown in Table I, indicate that the proposed method
achieved the smallest accuracy loss on SST-2, MRPC and RTE.

On the RTE dataset, the proposed method achieved 4.76%
improvement in task accuracy. This can be explained as DAMF
extensively prunes the structure of MHSA, introducing an
implicit regularization and avoiding overfitting [26].

C. Parameters and MACs

The total number of parameters and computations of a single
MHSA layer across all methods are compared in Table II.
The input token length is set to 128. In this experiment, the
proposed method achieved the fewest parameters and DMM
MACs, while reducing the DMM proportion in total MACs to
0.02%.

TABLE I
THE COMPARISON OF ACCURACY LOSS ON FOUR TASKS

Methods
Acc. Loss ↓*1

SST-2 MRPC QQP RTE
SkipBERT*2 2.78% 3.37% 1.40% 4.22%
BERT-PKD*2 4.39% 7.09% 1.40% 6.17%
BERTsmall*3 4.06% 6.19% 4.35% 6.93%
BERT+DAMF*4 0.28% 0.69% 4.11% -4.79%
*1 Percentage accuracy loss compared to BERT-base.
*2 The result of SkipBERT and BERT-PKD from reference

[23].
*3 The result of BERTsmall from https://github.com/google-

research/bert.
*4 The proposed method applied on BERT-base.

TABLE II
THE COMPARISON OF TOTAL PARAMETERS AND MACS IN MHSA

Param. /M*1 Dyn. MACs/M*1 MACs/M*1 Dyn. Ratio
SkipBERT*2 9.00 12.78 314.77 4.06%
BERT-PKD*2 9.00 12.78 314.77 4.06%
BERTsmall*3 4.00 8.52 142.74 5.97%
BERT+DAMF*2 4.51 0.03 153.39 0.02%
*1 The total parameters and MACs are evaluated at token size 128, with single

MHSA.
*2 SkipBERT, BERT-PKD and ours with dmodel = 768, nhead = 12, same as

BERT-base.
*3 BERTsmall with dmodel = 512, nhead = 8.

D. Memory Access

The memory access of a single attention head across all
methods are compared in the experiment. Since SkipBERT
and BERT-PKD share the same configuration and structure
as BERT-base, their memory access is identical. The memory
access of all algorithms are normalized by dividing that of
BERT-base. As shown in Fig 5, the proposed method achieves
the greatest reduction in memory access, improving by 2.71
times.

S k i p B E R T B E R T - P K D B E R T s m a l l B E R T + D A M F0 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0
N o r m . M e m o r y A c c e s s

Fig. 5. The normalized memory access.

E. Discuss

Although BERTsmall seems to achieve lower MACs, its
main benefit comes from the reduced model size. However,

the proportion of DMM MACs increases.
Unlike other methods in the experiment, the proposed

DAMF method does not change the number of attention heads
(nhead) or the hidden layer dimensions (dmodel). Compared to
SkipBERT and BERT-PKD, which have the same hyperparam-
eter settings, DAMF achieves a more significant reduction in
DMM MACs, approximately 426 times lower, while reducing
parameters by 1.99 times and total MACs by 2.21 times.

The proposed DAMF is a hardware-friendly optimization
compared to other methods. This is partly because DAMF sig-
nificantly reduces the proportion of DMM, greatly minimizing
memory access requirements. Additionally, DAMF eliminates
the exponential and division computations in the softmax
function, further enhancing hardware efficiency. These make
DAMF to be conducive to promoting the energy efficiency of
accelerators.

Lastly, DAMF exhibits a much smaller accuracy loss across
the four tasks compared to SkipBERT and BERT-PKD.

V. CONCLUSION

The proposed DAMF optimizes Q×KT and A′ × V from
an algorithmic perspective. Firstly, by leveraging WQ,WK

weight matrix fusion and SVD approximation, it merges the
linear transformation and Q×KT into vector inner products
and scalar operations, reducing both the parameters and DMM
computations. Secondly, it approximates the softmax as shift
factors based on the Maclaurin series and power-of-two, and
replaces the entire Q × KT with hardware-friendly shift
operations.

Experimental results show that the proposed method applied
to the BAER-base does not introduce significant accuracy loss.
Compared to MHSA with the same configuration, it reduces
the parameters by 1.99 times, DMM MACs by 284 times, total
MACs by 2.21 times and memory access by 2.71 times.

REFERENCES

[1] S. Islam et al., “A comprehensive survey on applications of transformers
for deep learning tasks,” in Expert Syst. Appl., vol. 241, p. 122666, May
2024.

[2] W. Fedus, B. Zoph, and N. Shazeer, “Switch Transformers: Scaling to
Trillion Parameter Models with Simple and Efficient Sparsity,” in J.
Mach. Learn. Res., vol. 23, no. 120, pp. 1-39, 2022.

[3] L. Dong, S. Xu, and B. Xu, “Speech-Transformer: A No-Recurrence
Sequence-to-Sequence Model for Speech Recognition,” in IEEE Int.
Conf. Acoust. Speech Signal Process. (ICASSP), Apr. 2018, pp. 5884-
5888.

[4] T. Afouras, J. S. Chung, A. Senior, O. Vinyals, and A. Zisserman, “Deep
Audio-Visual Speech Recognition,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 44, no. 12, pp. 8717-8727, Dec. 2022.

[5] B. Shi, M. Yang, X. Wang, P. Lyu, C. Yao, and X. Bai, “ASTER: An
Attentional Scene Text Recognizer with Flexible Rectification,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 41, no. 9, pp. 2035-2048, Sep.
2019.

[6] X. Zhai, A. Kolesnikov, N. Houlsby, and L. Beyer, “Scaling Vision
Transformers,” in IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2022, pp. 1204-1213.

[7] R. Strudel, R. Garcia, I. Laptev, and C. Schmid, “Segmenter: Trans-
former for Semantic Segmentation,” in IEEE/CVF Int. Conf. Comput.
Vis. (ICCV), Oct. 2021, pp. 7242-7252.

[8] A. Dosovitskiy et al., “An Image is Worth 16x16 Words: Transformers
for Image Recognition at Scale,” in Int. Conf. Learn. Representations
(ICLR), Oct. 2020.

[9] Q. Yang, X. Wang, L. Chen, Y. Zhou and S. Qiao, ”CS-TTD: Triplet
Transformer for Compressive Hyperspectral Target Detection,” in IEEE
Trans. Geosci. Remote Sens., doi: 10.1109/TGRS.2024.3436084.

[10] A. Vaswani et al., “Attention is All you Need,” in Advances in Neural
Information Processing Systems, Curran Associates, Inc., 2017.

[11] H. You, W. Li, D. Shang, Y. Zhou, and S. Qiao, “A 1–8b Reconfigurable
Digital SRAM Compute-in-Memory Macro for Processing Neural Net-
works,” in IEEE Trans. Circuits Syst. I: Regular Papers, pp. 1–13, 2024.

[12] R. Guo et al., “CIMFormer: A Systolic CIM-Array-Based Transformer
Accelerator With Token-Pruning-Aware Attention Reformulating and
Principal Possibility Gathering,” in IEEE J. Solid-State Circuits, pp.
1–13, 2024.

[13] F. Tu et al., “TranCIM: Full-Digital Bitline-Transpose CIM-based Sparse
Transformer Accelerator With Pipeline/Parallel Reconfigurable Modes,”
in IEEE J. Solid-State Circuits, vol. 58, no. 6, pp. 1798–1809, Jun. 2023.

[14] M. Huang, J. Luo, C. Ding, Z. Wei, S. Huang, and H. Yu, “An Integer-
Only and Group-Vector Systolic Accelerator for Efficiently Mapping
Vision Transformer on Edge,” in IEEE Trans. Circuits Syst. I: Regular
Papers, vol. 70, no. 12, pp. 5289–5301, Dec. 2023.

[15] F. Tu et al., “A 28nm 15.59µJ/Token Full-Digital Bitline-Transpose CIM-
Based Sparse Transformer Accelerator with Pipeline/Parallel Reconfig-
urable Modes,” in 2022 IEEE Int. Solid-State Circuits Conf. (ISSCC),
Feb. 2022, pp. 466–468.

[16] T. Li, F. Zhang, X. Fan, J. Shen, W. Guo, and W. Cao, “Unified Accel-
erator for Attention and Convolution in Inference Based on FPGA,” in
2023 IEEE Int. Symp. Circuits Syst. (ISCAS), May 2023, pp. 1–5.

[17] F. Tu et al., “MulTCIM: Digital Computing-in-Memory-Based Multi-
modal Transformer Accelerator With Attention-Token-Bit Hybrid Spar-
sity,” in IEEE J. Solid-State Circuits, vol. 59, no. 1, pp. 90–101, Jan.
2024.

[18] S. Sridharan, J. R. Stevens, K. Roy, and A. Raghunathan, “X-Former:
In-Memory Acceleration of Transformers,” in IEEE Trans. Very Large
Scale Integration (VLSI) Syst., vol. 31, no. 8, pp. 1223–1233, Aug. 2023.

[19] J.-W. Su et al., “A 28nm 64Kb Inference-Training Two-Way Transpose
Multibit 6T SRAM Compute-in-Memory Macro for AI Edge Chips,”
in 2020 IEEE Int. Solid-State Circuits Conf. (ISSCC), Feb. 2020, pp.
240–242.

[20] F. Spagnolo, S. Perri, and P. Corsonello, “Aggressive Approximation of
the SoftMax Function for Power-Efficient Hardware Implementations,”
in IEEE Trans. Circuits Syst. II: Exp. Briefs, vol. 69, no. 3, pp.
1652–1656, Mar. 2022.

[21] Y. Zhang et al., “Base-2 Softmax Function: Suitability for Training and
Efficient Hardware Implementation,” in IEEE Trans. Circuits Syst. I:
Regular Papers, vol. 69, no. 9, pp. 3605–3618, Sep. 2022.

[22] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training
of Deep Bidirectional Transformers for Language Understanding,” in
Proceedings of the 2019 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), J. Burstein, C.
Doran, and T. Solorio, Eds., Minneapolis, Minnesota: Association for
Computational Linguistics, Jun. 2019, pp. 4171–4186.

[23] J. Wang, K. Chen, G. Chen, L. Shou, and J. McAuley, “SkipBERT:
Efficient Inference with Shallow Layer Skipping,” in Proceedings of the
60th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), S. Muresan, P. Nakov, and A. Villavicencio,
Eds., Dublin, Ireland: Association for Computational Linguistics, May
2022, pp. 7287–7301. doi: 10.18653/v1/2022.acl-long.503.

[24] S. Sun, Y. Cheng, Z. Gan, and J. Liu, “Patient Knowledge Distillation
for BERT Model Compression,” in Proceedings of the 2019 Conference
on Empirical Methods in Natural Language Processing and the 9th In-
ternational Joint Conference on Natural Language Processing (EMNLP-
IJCNLP), K. Inui, J. Jiang, V. Ng, and X. Wan, Eds., Hong Kong, China:
Association for Computational Linguistics, Nov. 2019, pp. 4323–4332.

[25] A. Wang, A. Singh, J. Michael, F. Hill, O. Levy, and S. Bowman,
“GLUE: A Multi-Task Benchmark and Analysis Platform for Natural
Language Understanding,” in Proceedings of the 2018 EMNLP Work-
shop BlackboxNLP: Analyzing and Interpreting Neural Networks for
NLP, T. Linzen, G. Chrupała, and A. Alishahi, Eds., Brussels, Belgium:
Association for Computational Linguistics, Nov. 2018, pp. 353–355.

[26] M. M. Bejani and M. Ghatee, “A systematic review on overfitting control
in shallow and deep neural networks,” Artif. Intell. Rev., vol. 54, no. 8,
pp. 6391–6438, Dec. 2021.

